BBAMEM 75101

Na⁺/K⁺-ATPase: modes of inhibition by Mg²⁺

Joseph D. Robinson and Promod R. Pratap

Department of Pharmacology, State University of New York, Health Science Center, Syracuse, NY (U.S.A.)

(Received 9 July 1990)

Key words: ATPase, Na*/K*-; Phosphatase, K*-; Cation; Magnesium ion; Choline; Conformational change

Adding 15 mM free Mg^{2+} decreased V_{max} of the Na^+/K^+ -ATPase reaction. Mg^{2+} also decreased the $K_{0.5}$ for K^+ activation, as a mixed inhibitor, but the increased inhibition at higher K^+ concentrations diminished as the Na^+ concentration was raised. Inhibition was greater with Rb^+ but less with Li^+ when these cations substituted for K^+ at pH 7.5, while at pH 8.5 inhibition was generally less and essentially the same with all three cations: implying an association between inhibition and ion occlusion. On the other hand, Mg^{2+} increased the $K_{0.5}$ for Na^+ -activation of the Na^+/K^+ -ATPase and Na^+ -ATPase reactions, as a mixed inhibitor. Changing incubation pH or temperature, or adding dimethylsulfoxide affected inhibition by Mg^{2+} and $K_{0.5}$ for Na^+ diversely. Presteady-state kinetic studies on enzyme phosphorylation, however, showed competition between Mg^{2+} and Na^+ . In the K^+ -phosphatase reaction catalyzed by this enzyme Mg^{2+} was a (near) competitor toward K^+ . Adding Na^+ with Na^+ inhibited phosphatase activity, but under these conditions 15 mM Ng^{2+} stimulated rather than inhibited; still higher Ng^{2+} concentrations then inhibited with Ng^{2+} and Ng^{2+} stimulated rather than inhibited; still higher Ng^{2+} concentrations then inhibited with Ng^{2+} plus Ng^{2+} . Similar stimulation and inhibition occurred when Ng^{2+} was substituted for Ng^{2+} , although the concentrations required were an order of magnitude less. In all these experiments no ionic substitutions were made to maintain ionic strength, since alternative cations, such as choline, produced various specific effects themselves. Kinetic analyses, in terms of product inhibition by Ng^{2+} , require Ng^{2+} release at multiple steps. The data are accommodated by a scheme for the Ng^{2+} hinding. The latter alternatives necessitate two Ng^{2+} ions bound simultaneously to the enzyme, presumably to divalent cation-sites associated with the p

Introduction

The Na⁺/K⁺-ATPase reaction involves enzyme phosphorylation and dephosphorylation, transitions between two major conformational families, and interactions between enzyme and ATP, ADP, P_i, Na⁺, K⁺ and Mg²⁺. Usual formulations of the standard Albers-Post reaction scheme, however, depict interactions with all those ligands except Mg²⁺ [1-5]. Effects of Mg²⁺ on the enzyme have been examined for several decades, yet even recent studies disagree on such basic issues as the number of sites available to Mg²⁺, which steps in the reaction sequence are affected by Mg²⁺, and the sensi-

Abbreviations: FITC, fluorescein isothiocyanate; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; 1AF, 5-iodoacetamidofluorescein; Mes, 2-(N-morpholino)ethanesulfonic acid; Me₂SO, dimethylsulfoxide; Taps, tris(hydroxymethyl)methylaminopropanesulfonic acid.

Correspondence: J.D. Robinson, Department of Pharmacology, SUNY Health Science Center, Syracuse, NY 13210, U.S.A.

tivity of these responses to other ligands such as K+ [6-12]. The experiments reported here extend the steady-state kinetic studies on Na+/K+-ATPase, Na+-ATPase and K+-nitrophenyl phosphatase reactions catalyzed by this enzyme, including examination of interactions among ligands and factors modifying the response to Mg2+. In addition, presteady-state kinetic studies on the ATPase reaction permit evaluation of Mg2+ effects during just the initial steps of the reaction sequence. Although an unresolved experimental problem in assessing ionic strength effects precludes a quantitative analysis of the data, these experiments in conjunction with previous results strongly support a reaction sequence for the Na+/K+-ATPase in which MgATP and Mg2+ (as a product) interact in different order over three alternative pathways, representing alternative points for Mg²⁺ release. This formulation requires that two Mg2+ be bound to the enzyme simultaneously in two of the pathways, in accord with proposals [10,12] depicting nucleotide- and phosphatebinding regions for Mg2+, with migration of Mg2+ between these sites during the reaction sequence.

Methods and Materials

The enzyme preparation was obtained from the meduliae of frozen canine kidneys [13].

Na⁺/K⁺-ATPase activity was measured in terms of P_i production [14], routinely at 37°C. The standard medium contained 20 mM Hepes/triethylamine (pH 7.5), 0.1 mM EGTA, 3 mM ATP, 3 mM MgCl₂, 90 mM NaCl, and 10 mM KCl. Na⁺-ATPase activity was measured similarly, in media without KCl and with 10–100 mM NaCl. K⁺-nitrophenylphosphatase activity was measured in terms of nitrophenol production [15], routinely at 37°C. The standard medium was the same as that for the Na⁺/K⁺-ATPase reaction, except that 3 mM nitrophenyl phosphate was substituted for ATP and NaCl was omitted.

Data for the steady-state experiments presented are means of four or more experiments, each performed in duplicate to quadruplicate, and are presented ± S.E. where appropriate. Lines in the figures were fitted by eye.

Presteady-state kinetic measurements were made using enzyme labeled with IAF [16] and a stopped-flow fluorimeter (Kinetic Instruments) interfaced with a Macintosh IIcx computer (Apple Computer) through a MacADIOS interface board (GW Instruments). Excitation was at 492 nm, and emitted light was recorded after passage through a Corning 69 cut-off filter (528 nm); 6-8 traces were recorded and the rate constant for

a single-exponential transition calculated. Reaction temperature was 24°C.

Frozen kidneys were obtained from Pel-Freeze; ATP, nitrophenyl phosphate, Hepes, Mes, Taps, and EGTA from Sigma; IAF from Molecular Probes; triethylamine from Aldrich; and Me₂SO and choline chloride from Fisher. The choline chloride was recrystallized from ethanol/water and stored in a desiccator under vacuum; fresh solutions were made daily.

Results

Interactions of Mg²⁺ and K⁺ with Na⁺/K⁺-ATPase activity

Adding 15 mM $MgCl_2$ to the standard incubation medium reduced Na^+/K^+ -ATPase activity by a third. This inhibition, however, was not associated with an increased $K_{0.5}$ for K^+ -activation (Fig. 1a). Instead, $MgCl_2$ inhibited more at high KCl concentrations that at low, and Dixon plots of Mg^{2+} -inhibition at various KCl concentrations reveal a family of diverging lines (Fig. 1b). This pattern of mixed inhibition conflicts with earlier reports [7,10] of uncompetitive inhibition (in which Dixon plots are parallel); Sachs [10], however, found for Mg^{2+} -inhibition toward K^+ "nearly parallel" Dixon plots. Furthermore, Mg^{2+} inhibition did not have an absolute requirement for K^+ , in contrast to a recent report [11], and the sensitivity of inhibition to

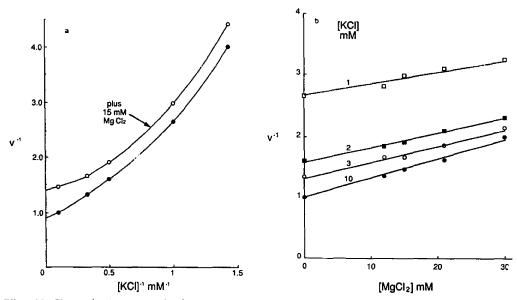


Fig. 1. Effect of $MgCl_2$ on K^+ -activation of Na^+/K^+ -ATPase. (a) The relative velocities of enzyme incubated at 37°C in the standard medium modified to contain the concentrations of KCl indicated, in the absence (a) or presence (b) of an additional 15 mM $MgCl_2$. Data are presented in double-reciprocal form, with the velocity in the standard medium defined as 1.0. $K_{0.5}$ values are: 1.7 mM (control) and 1.1 mM (15 mM Mg^{2+}). (b) The results of these and comparable experiments, with the concentrations of KCl and added $MgCl_2$ indicated, in the form of a Dixon plot.

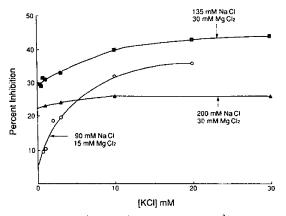
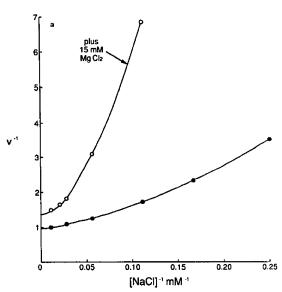


Fig. 2. Effect of K⁺ and Na⁺ concentrations on Mg²⁺ inhibition. Experiments were performed as in Fig. 1 but with the concentrations of KCl, NaCl and additional MgCl₂ indicated. The percent inhibition caused by the added concentration of MgCl₂ is plotted against the KCl concentration for three levels of NaCl.

K⁺ concentration decreased markedly as the Na⁺ concentration was raised (Fig. 2).

Substituting RbCl for KCl reduced ATPase activity but increased inhibition by MgCl₂, whereas substituting LiCl reduced both ATPase activity and inhibition (Table I), as previously described [7]. The differential sensitivity that follows substituting Rb⁺ or Li⁺ for K⁺ was


TABLE I

Inhibition by MgCl₂ as a function of monovalent cation and pH

Enzyme was incubated at 37°C in the standard medium (10 mM KCl) or media containing in place of KCl 10 mM RbCl or 50 mM LiCl at either pH 7.5 (20 mM Hepes) or pH 8.5 (20 mM Taps), in the absence or presence of an additional 15 mM MgCl₂. The relative activity (without additional MgCl₂) is expressed relative to incubations with KCl

Monovalent cation	Incubation pH	Relative activity	Percent inhibition by 15 mM MgCl ₂
Rb +	7.5	0.63 ± 0.01	61 ± 3
K *	7.5	1.69	32 ± 2
Li ⁺	7.5	0.27 ± 0.01	18±5
Rb ⁺	8.5	0.93 ± 0.03	32 ± 3
K *	8.5	1.00	26 ± 2
Li +	8.5	0.18 ± 0.02	29 ± 5

there attributed to the differential rates of occlusion/deocclusion for those cations in the reaction sequence: the ease of deocclusion follows the sequence $Rb^+ < K^+ \ll Li^+$ [7,9,17]. Raising the incubation pH also speeds deocclusion [9], and at pH 8.5 ATPase activity with RbCl was equivalent to that with KCl, and inhibition by MgCl₂ was also nearly the same. Nevertheless, inhibition persisted at pH 8.5, with all three cations, indicating that inhibition involves more than effects on cation occlusion/deocclusion.

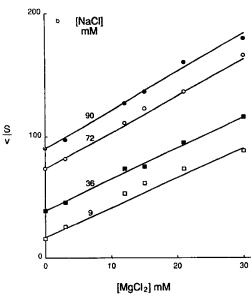


Fig. 3. Effect of MgCl₂ on Na⁺-activation of Na⁺/K⁺-ATPase. (a) Corresponding to experiments shown in Fig. 1a, but with 10 mM KCl and the concentrations of NaCl indicated, in the absence (a) or presence (b) of an additional 15 mM MgCl₂. K_{0.5} values are: 7.6 mM (control) and 21 mM (15 mM MgCl₂). (b) Velocities from similar experiments with the NaCl and additional MgCl₂ concentrations indicated, presented as Cornish-Bowden plots of S/v against inhibitor (where S is NaCl concentration); the lines intersect near -90 mM MgCl₂.

I teractions of Mg²⁺ and Na⁺ with Na⁺/K⁺-ATPase activity

Adding 15 mM MgCl₂ to the incubation media increased the $K_{0.5}$ for Na⁺-activation, although Mg²⁺ was not a simple competitor toward Na⁺, and inhibition persisted at infinite NaCl concentration (Fig. 3a). Cornish-Bowden plots of inhibition at various NaCl concentrations reveal a family of converging lines (Fig. 3b). This pattern of mixed inhibition contrasts with the pattern of parallel lines that occurs with competitive inhibition. Sachs [10] also found mixed inhibition by Mg²⁺ toward Na⁺, in studies on Na⁺/K⁺-exchange in erythrocytes, when no intracellular K⁺ was present and extracellular K⁺ was high.

In addition, raising the incubation pH from 6.5 to 8.5 decreased the $K_{0.5}$ for Na⁺ (with the standard MgCl₂ concentration), but that change in pH increased inhibition by MgCl₂ at low NaCl concentrations (Table II). This increased inhibition at pH 8.5 correlates neither with slower K⁺ deocclusion nor with a decreased apparent affinity for Na⁺. Lowering the incubation temperature to 20°C or adding Me₂SO also markedly reduced inhibition, notably at low NaCl concentrations, although neither of these modifications increased the apparent affinity for Na⁺ (Table II).

Solute effects on Na +/K +-ATPase activity

In the preceding experiments, the addition of $MgCl_2$ was also accompanied by an increased ionic strength. To control ionic strength, another ion without specific effects on the enzyme should be varied inversely with $MgCl_2$. Unfortunately, searches for such a nonspecific ion have been unsuccessful. Choline has been a frequent choice; triethylamine, which has a pK_a of 10.7 [19], is an obvious alternative. But these ions produce quantita-

TABLE II

Effect of temperature, pH and dimethylsulfoxide on $K_{0.5}$ for Na $^+$ and inhibition by MgCl $_2$

Enzyme was incubated at 20°C or 37°C in the standard medium (90 mM NaCl) or media containing 9 mM NaCl, in the absence or presence of an additional 15 mM MgCl₂, at pH 7.5 (20 mM Hepes), pH 6.5 (20 mM Mes), or pH 8.5 (20 mM Taps), and in the absence or presence of Me₂SO (20%, v/v). The $K_{0.5}$ for Na⁺ was measured from incubations in the standard medium containing no additional MgCl₂, but with a range of NaCl concentrations, and at the temperatures and pH levels indicated, as well as in the absence and presence of Me₂SO; the $K_{0.5}$ value was calculated using the Kinfit program [18].

Temper- pH ature (°C)	pН	of	$K_{0.5}$ for Na ⁺	Percent inhibition by 15 mM MgCl ₂ with		
	Me ₂ SO	(mM)	90 mM NaCl	9 mM NaCl		
37	6.5	_	13.0 ± 0.8	27 ± 2	36 ± 4	
37	7.5	_	7.6 ± 0.1	33 ± 2	81 ± 5	
37	7.5	+	9.6 ± 1.8	24 ± 3	43 ± 2	
37	8.5	_	6.0 ± 0.1	26 ± 2	98 ± 4	
20	7.5	-	9.9 ± 1.8	32 ± 3	47 ± 3	

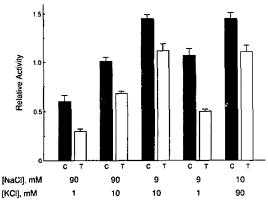


Fig. 4. Effects of choline chloride or triethylamine chloride on Na*/K*-ATPase. Activity with the concentrations of NaCl and KCl indicated, and with either 90 mM choline chloride (C) or triethylamine chloride (T), is presented relative to that in the absence of those organic salts.

tively and qualitatively different effects that vary with the concentration and ratio of Na⁺ and K⁺ (Fig. 4). In the standard medium adding 90 mM choline chloride had little effect, whereas adding 90 mM triethylamine chloride inhibited by 30%. But if the NaCl and KCl concentrations were merely reversed, then choline chloride stimulated and triethylamine chloride had little effect. Moreover, stimulation or inhibition by choline chloride was a function of the ratio of Na⁺ to K⁺ rather than of their absolute amount (i.e., their ionic strength).

Consequently, if choline is substituted for Mg²⁺ to maintain a constant ionic strength, then reducing the choline alone would decrease Na⁺/K⁺-ATPase activity at low Na⁺ concentrations more than at high Na⁺ concentrations, in addition to any effects of the added Mg²⁺. Because diverse responses occurred with all the cations tested (including Tris, imidazole, histidine and glucosamine: not shown), no attempt was made in the experiments presented here to maintain a constant ionic strength, as desirable as that goal is in principle.

Mg2+ and Na+-ATPase activity

In the Na⁺-ATPase reaction cation occlusion/deocclusion is thought not to be kinetically significant in the E₂ to E₁ transitions [2]. Thus, studies on this reaction should permit examination of inhibition by Mg²⁺ in the absence of its effects on those processes. As in the Na⁺/K⁺-ATPase reaction, Mg²⁺ inhibited more at low than at high Na⁺ concentrations, but significant inhibition occurred with 15 mM MgCl₂ even in the presence of 100 mM NaCl (Table III): inhibition by Mg²⁺ appeared to be mixed rather than purely competitive. Sachs [10] reported more inhibition by Mg²⁺ with low than with high Na⁺ concentrations, in

TABLE III

Effect of MgCl2 and choline chloride on Na + ATPase activity

Enzyme was incubated at 37° C in the standard medium, without KCl but with 10 or 100 mM NaCl, and with additional MgCl₂ or choline chloride as indicated. Dixon plots of Mg²⁺-inhibition reveal converging lines that intersect near -100 mM MgCl₂.

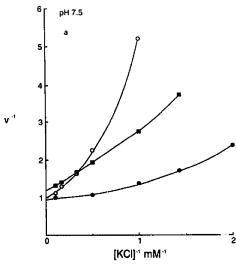
	Relative activity	Percent change in Na +-ATPase activity with				
		MgCl ₂		choline chloride		
		15 mM	30 mM	45 mM	90 mM	
10	0.55 ± 0.08	-21±4	-35±5	+2±6	-11±7	
100	1.00	-14 ± 4	-24 ± 3	-6 ± 4	-5 ± 3	

studies on uncoupled Na*-efflux in erythrocytes, and concluded that the inhibition was at least mixed.

Presteady-state kinetics of Mg2+/Na+ interactions

To avoid the multiple sites of Mg^{2+} interactions occurring over the entire reaction sequence, the presteady-state kinetics of the $\mathrm{Mg}^{2+}/\mathrm{Na}^+$ interactions with the E_1 enzyme conformation were examined. In these experiments the rates of the transition from the E_1 to E_2 conformation of the IAF-labeled enzyme were followed fluorimetrically [16]. Enzyme in buffer containing 5 to 40 mM NaCl was mixed rapidly with buffer containing ATP, the same concentrations of NaCl, and a range of MgCl_2 concentrations. The subsequent fluorescence changes reflect the transition from E_1 to E_2 conformations, require ATP, Mg^{2+} and Na^+ , and thus corre-

TABLE IV


Effect of Na and Mg2+ on the rate of fluorescence change of IAF-labeled enzyme

IAF-labeled enzyme, in the presence of the NaCl concentrations indicated and 0.1 mM MgCl₂, was rapidly mixed with equal concentrations of NaCl, sufficient MgCl₂ to give the final concentrations listed, and 0.1 mM ATP; each syringe also contained 20 mM Hepes/triethylamine (pH 7.5). The subsequent fluorescence change was monitored, as described under Methods. The rate constant for that change, attributable to the transition from E₁ to E₂P, is listed as a function of final concentrations of NaCl and MgCl₂.

[MgCl ₂] (mM)	Rate constant for fluorescence changes (s-1) with			
	5 mM NaCl	10 mM NaCl	40 mM NaCl	
0.1	7.8 ± 0.8	7.0 ± 1.0	7.6±0.5	
1.0	6.3 ± 1.0	6.8 ± 0.5	7.7 ± 1.2	
10.0	3.7 ± 0.2	7.7 ± 0.6	8.8 ± 1.0	
30.0	1.4 ± 0.2	3.1 ± 0.2	7.8 ± 0.5	

spond to E₂P formation from E₁ [20]. The rate constant for this transition is decreased by 30 mM MgCl₂ in the presence of 5 mM NaCl but not 40 mM NaCl (Table IV), consistent with competitive inhibition.

Studies on the K^+ -nitrophenylphosphatase reaction provide several advantages for studying Mg^{2+} interactions with the enzyme. There is no phosphorylated intermediate [21] and divalent cation occlusion presumably does not occur; in addition, K^+ occlusion/

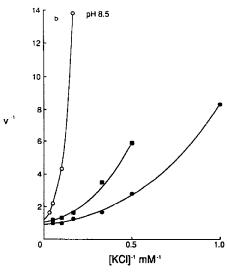


Fig. 5. Effects of MgCl₂ and choline chloride on K*-activation of phosphatase reaction. (a) Relative velocities of enzyme incubated in the standard medium for the phosphatase reaction modified to contain the concentrations of KCl indicated (•), or containing additionally 15 mM MgCl₂ (•) or 45 mM choline chloride (•). Data are presented in double-reciprocal form, with the velocity in the standard medium defined as 1.0. K_{0.5} values are: 0.7 mM (control), 2.3 mM (15 mM MgCl₂) and 1.3 mM (45 mM choline chloride). (b) Velocities from corresponding experiments at pH 8.5 (Taps buffer in place of Hepes, same symbols as in (a)). K_{0.5} values are: 1.4 mM (control), 9 mM (15 mM MgCl₂), and 3.6 mM (45 mM choline chloride).

TABLE V

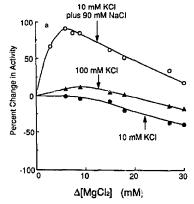
Effect of MgCl₂ and choline chloride on phosphatase activity

Phosphatase activity was measured in the standard medium modified to contain the concentrations of monovalent cations indicated, in the absence and presence of an additional 15 mM MgCl₂ or 45 mM choline chloride

Cations	Relative	Percent change in activity with		
	activity	15 mM MgCl ₂	45 mM choline chloride	
10 mM KCl	1.00	-8±2	-21±3	
10 mM RbCl	0.98 ± 0.01	-7±1	-24 ± 2	
10 mM CsCl	0.52 ± 0.02	-83 ± 2	-28 ± 2	
100 mM KCl	0.53 ± 0.01	+5±3	-13 ± 3	
100 mM RbCl	0.52 ± 0.01	+6±8	-11 ± 2	
100 mM CsCl	0.54 ± 0.03	-18 ± 5	-20 ± 3	
100 mM LiCl	0.06 ± 0.01	-61 ± 6	-43 ± 5	
10 mM KCl plus				
90 mM NaCl	0.10 ± 0.03	+62±6	-39 ± 6	

deocclusion does not seem to participate in the reaction cycle [22]. Na $^+$ is not present in the standard medium, but K $^+$ activates the reaction at cytoplasmically-accessible sites that correspond to the sites at which Na $^+$ activates the Na $^+$ /K $^+$ -ATPase reaction [23]. Accordingly, 15 mM Mg $^{2+}$ increased the $K_{0.5}$ for K $^+$ -activation (Fig. 5a) and decreased the $V_{\rm max}$ little or not at all. Mg $^{2+}$ thus appears to act as a mixed (or possibly a competitive) inhibitor toward K $^+$.

The $K_{0.5}$ for K⁺-activation of the phosphatase reaction, however, responded to pH oppositely from the $K_{0.5}$ for Na⁺-activation of the Na⁺/K⁺-ATPase reaction (Fig. 5;Table II): raising the pH increased the $K_{0.5}$ for K⁺, although it also increased the inhibition by Mg²⁺ as it did toward Na⁺.


When Rb⁺ was substituted for K⁺ at pH 7.5, inhibition by Mg²⁺ remained the same (Table V), in contrast to substituting Rb⁺ for K⁺ in the Na⁺/K⁺-ATPase

reaction (Table I), and consistent with K^+ or Rb^+ occlusion/deocclusion not participating in the phosphatase reaction. The $K_{0.5}$ for Cs^+ is higher than that for K^+ or Rb^+ [24], and inhibition by Mg^{2+} was greater with 10 mM CsCl. With 100 mM concentrations of these salts, where velocities are equivalent, 15 mM $MgCl_2$ inhibited only with CsCl (Table V).

The $K_{0.5}$ for Li⁺ is also higher than that for K⁺ [24], but even with 100 mM LiCl the velocity is only a tenth that with the other cations examined, and inhibition by MgCl₂ was far greater (Table V). This greater sensitivity to Mg²⁺ with Li⁺, compared to the other monovalent cations, also distinguishes between the phosphatase and ATPase reactions.

Adding 90 mM NaCl to 10 mM KCl reduced K⁺-phosphatase activity about the same as substituting 100 mM LiCi for 10 mM KCl (Table V). But with K⁺ plus Na⁺, adding 15 mM MgCl₂ markedly stimulated phosphatase activity (Table V). This stimulation decreased with 30 mM MgCl₂ (Fig. 6), corresponding qualitatively to the increased inhibition by 30 mM Mg²⁺ occurring with K⁺ (Fig. 6) and with Rb⁺ and Cs⁺ (not shown).

A quantitative interpretation of these data is hampered by uncertainty about effects of ionic strength. Raising the K⁺ concentration from 10 to 100 mM halved the phosphatase activity (Table V) and this inhibition may be attributable, in part, to effects of ionic strength. Adding 90 mM choline chloride to 10 mM KCl reduced activity also by half (Fig. 6). Similarly, adding 30 mM MgCl₂ (equivalent in ionic strength to 90 mM KCl or choline chloride) to 10 mM KCl reduced activity by nearly half (Fig. 6). But inhibition by MgCl₂ is not solely due to effects of ionic strength: at low KCl concentrations 15 mM MgCl₂ inhibited far more than 45 mM choline chloride (Figs. 5, 7). Moreover, with 1 mM KCl plus 29 mM NaCl the stimulation by MgCl, was apparent at far lower concentrations (Fig.

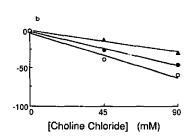


Fig. 6. Effect of MgCl₂ and choline chloride on phosphatase reaction with high KCl and NaCl concentrations. The percent change in activity, stimulation or inhibition, is presented as a function of additional MgCl₂ (∆MgCl₂, (a)) or choline chloride (b), in the standard medium containing 10 mM KCl (♠) or in media modified to contain 100 mM KCl (♠) or 10 mM KCl plus 90 mM NaCl (○).

TABLE VI

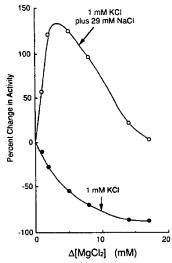
Effect of MgCl₂ and choline chloride on phosphatase activity in the presence of dimethylsulfoxide

Phosphatase activity was measured in the standard medium modified to contain the concentrations of monovalent cations indicated, in the absence and presence of an additional 15 mM MgCl₂ or 45 mM choline chloride, and in all cases with 20% (v/v) Me₂SO added. The effect of Me₂SO (in the absence of additional MgCl₂ and choline chloride) is listed relative to the activity with the particular monovalent cations in the absence of Me₂SO.

Cations	Relative effect of Mo ₂ SO	Percent change in activity with		
		15 mM MgCl ₂	45 mM choline chloride	
10 mM KCl	1.58 ± 0.07	+4±2	-9±3	
100 mM KCl	2.82 ± 0.12	-4 ± 2	-1 ± 4	
100 mM LiCl 10 mM KCl plus	1.73 ± 0.07	-54 ± 5	-58 ± 4	
90 mM NaCl	4.10 ± 0.27	$+8\pm1$	-17 ± 3	

7): 5 mM MgCl₂ then doubled the activity, whereas with 1 mM KCl in the absence of NaCl 5 mM MgCl₂ halved the activity. The inhibition by MgCl₂ in the presence of 1 mM KCl with and without NaCl was far greater than that with comparable choline chloride (Fig. 7). On the other hand, with 100 mM KCl, MgCl₂ either stimulated, or inhibited less, than did comparable amounts of choline chloride (Fig. 6).

Since Mn²⁺ both activates and inhibits at far lower concentrations than Mg²⁺ [25], experiments with Mn²⁺ permit examination of divalent cation effects with little change in ionic strength. Raising the MnCl₂ concentra-


tion from 0.1 to 3 mM reduced activity with 10 mM KCl by half, but tripled activity with 10 mM KCl plus 90 mM NaCl (data not shown). Nevertheless, inhibition in the presence of K⁺ plus Na⁺ did occur with MnCl₂ also: activity with 5 mM MnCl₂ was less than half that with 1 mM MnCl₂.

Adding Me₂SO was previously shown to decrease inhibition of the K⁺-phosphatase reaction by Mg²⁺ [26], in accord with its ability to reduce inhibition of the Na⁺/K⁺-ATPase activity at low Na⁺ concentrations (Table II). Me₂SO stimulated K⁺-phosphatase activity with 100 mM KCl more than that with 10 mM KCl, in the presence of the standard concentration of MgCl₂ in the incubation medium, 3 mM (Table VI). In the presence of an additional 15 mM MgCl₂, however, Me₂SO did not inhibit with either 10 or 100 mM KCl.

With 10 mM KCl plus 90 mM NaCl adding Me₂SO increased activity markedly, but then increasing the MgCl₂ concentration by 15 mM stimulated little further (Table VI), in contrast to adding 15 mM MgCl₂ in the absence of Me₂SO (Fig. 6). With 100 mM LiCl adding Me₂SO had relatively little effect on inhibition by MgCl₂.

Discussion

These data are here considered in terms of steadystate kinetic analyses that require distinct patterns of product inhibition as a function of the specific reaction step at which that product is released. Two limitations to these analyses are apparent. First, Mg²⁺ could inhibit by binding to the enzyme at other sites, and this

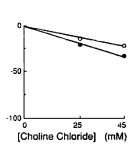


Fig. 7. Effect of MgCl₂ and cnottne chloride on pnospnatase reaction with low KCl and NaCl concentrations. Experiments were performed and data are presented as in Fig. 6, except that the media contained either 1 mM KCl (•) or 1 mM KCl plus 29 mM NaCl (•) and the basic MgCl₂ concentration, to which the various Δ[MgCl₂] shown were added, was 1.0 mM.

issue is addressed in the final section of this discussion. Second, in these experiments Mg^{2+} -inhibition is measured without compensation for changes in the ionic strength due to the added $MgCl_2$. It seems likely that at least some steps in the sequence are sensitive to ionic strength. Unfortunately, there is no obvious non-specific cation that can be added and subtracted reciprocally with Mg^{2+} to keep the ionic strength constant. Choline is frequently used, but the experiments here show that choline chloride concentrations comparable in ionic strength to 30 mM $MgCl_2$ stimulate Na^+/K^+ -ATPase activity in low $Na^+/high \ K^+$ media and inhibit in high $Na^+/low \ K^+$ media. And since various cations affect the reaction differently, there is no obvious alternative to choline.

Steps at which Mg2+ could interact

Fig. 8 depicts four steps at which Mg²⁺, as a product of the ATPase reaction, might interact as an inhibitor. This scheme thus provides a framework for considering the data presented here as well as results reported earlier; in the text the symbols (K), (Mg), and (K,Mg) represent those cations 'occluded' by the enzyme, i.e., bound so that exchange with the medium is quite slow.

(i) Mg²⁺ bound with the phosphorylated enzyme [27] could be released immediately after dephosphorylation, as the next step in the reaction sequence. Recent experiments with the Mg²⁺ analogs ⁶⁰Co and ⁵⁴Mn showed tight binding that followed enzyme phosphorylation and release that followed dephosphorylation [28,29], but the time course was not examined in sufficient detail to demonstrate at which of the succeeding steps that release occurred.

 Mg^{2+} is known to react with the enzyme, in the absence and presence of K^+ , to promote phosphorylation by P_i [30,31] and binding of vanadate [32,33].

 Mg^{2+} binding directly to $(K)E_2$ corresponds to the proposed release of Mg^{2+} from $(K,Mg)E_2$.

For the reaction sequence:

$$(Mg)E_2P \stackrel{+K}{=} (K,Mg)E_2P \stackrel{-P_1}{=} (K,Mg)E_2 \stackrel{-Mg}{=} (K)E_2$$

 $\stackrel{+MgATP}{=} (K)E_2MgATP$

Mg2+ should be an uncompetitive inhibitor toward K+ (assuming P_i release is irreversible: no P_i is present under initial velocity conditions). Uncompetitive inhibition is characterized by parallel lines in Dixon plots, although it can be experimentally difficult to distinguish between parallel and nearly-parallel but intersecting lines. The diverging lines found here (Fig. 1b) conflict with reports by Pedemonte and Beaugé [7] and Sachs [10], who did find uncompetitive inhibition. On the other hand, Rossi and Garrahan [11] reported instead an absolute dependence on K+ for inhibition by Mg2+, and argued that inhibition resulted from Mg2+ interacting with a branch pathway involving K+ at sites not associated with dephosphorylation. In that study, Mg²⁺ was added to the medium in exchange for choline; here, choline (Fig. 4) inhibited at low but not high K+-concentrations, so that removing choline could cause an apparent stimulation at low but not high K+-concentrations: effects that could appear as an increased inhibition by Mg²⁺ as K⁺-concentrations were raised, thereby producing the artefactual appearance of an absolute dependence of inhibition on K+-concentrations.

In any case, an early kinetic finding is inconsistent with the reaction scheme above. With Mg²⁺ release immediately preceding MgATP binding, Mg²⁺ must be a competitive inhibitor toward MgATP. Instead, it is a mixed inhibitor [34]. Consequently, Mg²⁺ must bind at another step in the sequence: instead or in addition.

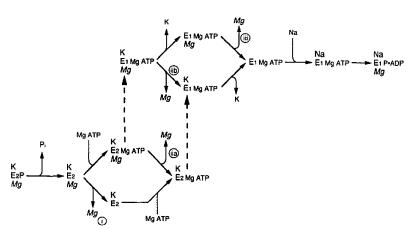


Fig. 8. Pathways for the Na⁺/K⁺-ATPase reaction, between (K,Mg)E₂P and (Na,Mg)E₁P·ADP. Four alternative sites for Mg²⁺ release after enzyme dephosphorylation are indicated.

The latter alternative seems more likely in light of the strong indication from studies on Mg^{2+} -promoted phosphate and vanadate interactions with $(K)E_2$, cited above, that Mg^{2+} binds to $(K)E_2$.

(iia) An alternative, additional step for Mg2+ release, and for Mg2+ binding as an inhibitor, would be that following MgATP binding to (K,Mg)E2. This possibility was not considered in other recent proposals [6,7,10,11]. but was explicitly examined by Forbush [9] in studies on 86 Rb deocclusion: there, Mg2+ inhibited deocclusion promoted by MgATP. Those data could be accounted for quantitatively by a scheme in which MgATP could bind to either (K,Mg)E or (K)E and Mg2+ to either (K)E or (K)EMgATP (presumably the enzyme conformation is E2, the form usually depicted as bearing occluded K+: but see below). This formulation obviously requires two Mg2+ bound simultaneously, one with ATP and one not, and is in accord with proposals by Sachs [10] but not those of Pedemonte and Beauge [7] and Rossi and Garrahan [11].

Forbush calculated a K_d for Mg^{2+} -binding to (K)EMgATP of 8 mM, using a rapid-equilibrium model that seems appropriate for those experiments. However, concentrations of Mg²⁺ several-fold higher than 8 mM inhibit ATPase activity relatively little in the presence of optimal concentrations of Na⁺ and K⁺ (Fig. 1-3). Analysis of a steady-state kinetic model, with very fast binding and release of product, reveals that the observed K, for product inhibition (calculated from standard kinetic plots) will be smaller than the K_i if the slow step in the reaction sequence follows binding of the inhibitor, but will be larger than the K_i if the slow step precedes. Thus, a Ki larger than 8 mM implies that a slow step in the reaction sequence precedes Mg2+ binding to that site. If Mg2+ binds to (K)E2MgATP then the slow step in the reaction sequence, by this analysis, must precede that step. However, the conventional viewpoint is that the slow step in the reaction sequence follows (K)E2MgATP formation, as shown by fluorescence studies on enzyme conformational changes [35].

(iib) The third possibility indicates that Mg^{2+} dissociates from $(K,Mg)E_1MgATP$, and binds back as a product inhibitor. With the slow step preceding that transition the observed K_1 would then be larger than the K_d , as noted above. Data are not available on conformational transitions from $(K)E_2MgATP$ to E_1MgATP as a function of Mg^{2+} concentration, and making such measurements would be technically quite difficult. However, Karlish et al. [36] found no effect of 1 mM Mg^{2+} on the rate of the E_2 to E_1 conversion measured with 4 μ M formycin diphosphate, but Hegyvary and Jorgensen [37] reported that 1-4 mM Mg^{2+} slows the transition from $(K)E_2$ to E_1Na of the FITC-labeled enzyme. On the basis of fluorescence criteria, Mg^{2+} was found to stabilize a conformation

distinct from E_2 or E_1 [37,38], whereas, using the criteria of tryptic digestion patterns, both E_2 [39,40] and E_1 [41] conformations have been described with Mg^{2+} .

The rate of the E₂ to E₁ conformational change, measured fluorimetrically with IAF-labeled enzyme, corresponds closely to the rate of ⁸⁶Rb deocclusion [35], consistent with alternative (iib): a slow conversion of (K,Mg)E₂MgATP to (K,Mg)E₁MgATP followed by rapid release of Mg²⁺ and then K⁺. (In those experiments, however, no Mg²⁺ was present; still, the rate of fluorescence change was 10% faster than the rate of deocclusion. Adding Mg²⁺ should stabilize (K,Mg)E₁MgATP, according to this formulation, affecting the rate of ⁸⁶Rb deocclusion more than the rate of fluorescence change.)

With either (iia) or (iib), i.e., with Mg²⁺ release occurring solely between MgATP binding and K⁺ release, two kinetic consequences follow (assuming the absence of P_i and saturation with MgATP). First, Mg²⁺ will be an uncompetitive inhibitor toward K⁺ when K⁺ as a product is absent. However, when K⁺ is present, as in the experiments reported here, then Dixon plots of Mg²⁺-inhibition as a function of K⁺ concentration will diverge slightly: as found here (Fig. 1b). Second, Mg²⁺ will be an uncompetitive inhibitor toward Na⁺: this was not the case (Fig. 3). Consequently, another site of Mg²⁺ interaction must be involved.

(iii) The fourth possibility depicts Mg²⁺ release following K⁺ release from (K,Mg)E₁MgATP. If this were the sole site for Mg²⁺ release, then (again assuming the absence of P₁ and saturating MgATP) Mg²⁺ once more should be an uncompetitive inhibitor toward K⁺ in the absence of K⁺ as product. And in the presence of such K⁺, Mg²⁺-inhibition at this point will give rise to Dixon plots that diverge, as found here (Fig. 1b). On the other hand, Mg²⁺ acting at this site should be a competitive inhibitor toward Na⁺. That Mg²⁺, in the presence of saturating MgATP, is not a simple competitor (Fig. 3) makes a strong argument for Mg²⁺-inhibition of pathway (ii) as well as (iii).

Furthermore, Mg²⁺ acted as a competitor toward Na⁺ in presteady-state experiments where the potential sites in pathways (i) and (ii) are not available (Table IV). And Mg²⁺-inhibition with a decreasing dependence on K⁺ as the Na⁺-concentration is raised (Fig. 2) is consistent with inhibition in pathway (iii) but not (ii).

Thus, kinetic evidence argues strongly for all three sites for Mg²⁺ release (and Mg²⁺ binding as a product inhibitor). These are shown in Fig. 9 as a Cleland diagram; enzyme isomerizations are not indicated and thus scheme (iia) is not distinguished from (iib).

Also shown is the Na^+ -ATPase reaction in which deocclusion of Na^+ from an E_2 conformation ...d MgATP binding to low-affinity substrate sites on E_2 are not kinetically apparent; the formulation depicts alternative orders for Mg^{2+} release and MgATP bind-

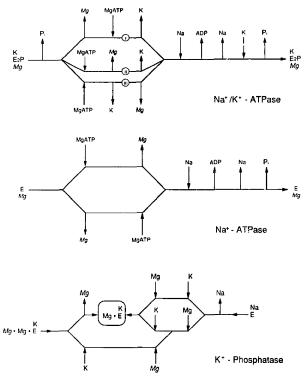


Fig. 9. Reaction schemes for Na+/K+-ATPase, Na+-ATPase, and K+-phosphatase reactions. For description see text.

ing, in accord with mixed inhibition between Mg²⁺ and Na⁺ (Table III), and again implying that Mg²⁺ and MgATP can bind simultaneously. Mixed inhibition by Mg²⁺ toward Na⁺ could also occur with a sequence in which Mg²⁺ release precedes a random order binding of Na⁺ and MgATP.

In the K⁺-nitrophenyl phosphatase reaction enzyme phosphorylation does not occur [21] and thus presumably divalent cation occlusion does not occur either. Mg2+ is depicted binding alternatively with K+ to form the complex that is catalytically active when substrate is bound [42], E·K·Mg (Fig. 9). Mg²⁺ binding to a second site, with lower affinity, will act as a mixed inhibitor toward K+, as observed. (If K+ could not bind to E · Mg · Mg, or Mg²⁺ to E · K · Mg, then Mg²⁺ would be a competitive inhibitor toward K+, as has been reported [43,44].) Lower concentrations of Mg2+ would antagonize inhibition by Na+ (Figs. 6, 7) through favoring the E · K · Mg complex, whereas higher concentrations would inhibit by forming the catalytically impaired complex E · K · Mg · Mg, as also observed (Figs. 6, 7). Moreover, inhibition of vanadate binding by high Mg2+-concentrations [33] is attributable to vanadate reacting with E · Mg but not (or less well) with E · Mg · Mg. Mg²⁺ apparently can bind to (Mg)E₂P₄ however, to produce an intermediate insensitive to K^+ -activated hydrolysis [30].

Sites at which Mg2+ could bind

Mg²⁺ might inhibit by competing directly with Na⁺ or K⁺ for their specific sites on the cytoplasmic surface of the enzyme (extracellular Mg²⁺ does not inhibit [45]). Thus, Mg²⁺ could act by occupying the Na⁺-activating sites of the ATPase reactions, the K⁺-activating sites of phosphatase reaction, the K⁺ sites that promote vanadate binding, and the monovalent cation sites that accelerate [9] deocclusion.

In the K⁺-phosphatase reaction, the inhibition by Na⁺ (Table V) is attributable to direct competition between Na⁺ and K⁺ for the activating sites (Fig. 9), since the K⁺ sites are believed to be identical to the cytoplasmically accessible sites at which Na⁺ activates the ATPase reactions [23]. Consequently, Mg²⁺ cannot be stimulating the phosphatase reaction in the presence of Na⁺ and K⁺ (Figs. 6,7) by binding to their monovalent cation sites. However, inhibition by Na⁺ might also involve occupancy of the activating sites for Mg²⁺. Stimulation by Mg²⁺ could then represent displacement of Na⁺ from those Mg²⁺-sites. Me₂SO increases the affinity for Mg²⁺ at those Mg²⁺ sites [26], and in

the presence of Me_2SO both inhibition by Na^+ and stimulation by higher Mg^{2+} concentrations are less (Table VI). Me_2SO also stimulates more with 100 mM KCI than 10 mM KCI (Table VI), as would be expected if K^+ were competing for Mg^{2+} sites. Nevertheless, Me_2SO decreases inhibition by Mg^{2+} with little effect on the $K_{0.5}$ for K^+ -activation of the phosphatase reaction [26]. Similarly, in the Na^+/K^+ -ATPase reaction Me_2SO has little effect on the $K_{0.5}$ for Na^+ activation, yet it decreases inhibition by Mg^{2+} at low Na^+ concentrations (Table II). Moreover, when the medium pH is lowered the $K_{0.5}$ for K^+ is decreased (Fig. 4), the $K_{0.5}$ for Na^+ is increased (Table II), but in both cases inhibition by Mg^{2+} is decreased (Refs. 26 and Table II).

The strongest argument for Mg²⁺ acting competitively toward Na⁺ in pathway (iii), rather than competing directly at the Na⁺ sites, comes from the experiments of Fig. 2. There Mg²⁺-inhibition was increased by higher K⁺ concentrations when Na⁺ concentrations were low but not when Na⁺ concentrations were high: K⁺ promotes Mg²⁺ antagonism toward Na⁺, which would not be expected if Mg²⁺ inhibited by binding to the Na⁺ sites (since the K⁺ sites and the Na⁺ sites are identical). (This analysis is comparable to the proposal [11] that K⁺ acting at sites other than those activating E₂P hydrolysis promotes inhibition by Mg²⁺, but it requires that the K⁺-sites be not in a dead-end branch pathway but in the reaction sequence as the K⁺-release sites.)

Although direct competition by Mg2+ for Na+ and K+-sites may also occur, these arguments support schemes involving separate, distinct sites through which Mg2+ acts, as depicted in Figs. 8 and 9. Evidence that two Mg2+ can bind simultaneously (here and Refs. 9,10) supports studies on interactions between enzyme. divalent cation, and Cr- or Co-complexes of ATP [8,12], also in accord with this formulation. Thus, the occluded-Mg2+ site of (Mg)E2P may be distorted after dephosphorylation, allowing release of Mg2+, yet coexist with the Mg2+-binding region of the low-affinity nucleotide site on (K)E2P to which MgATP binds. (It is of interest that Mg2+ promotes deocclusion with ATP but not ADP [9], suggesting that the Mg2+-binding region is associated with the gamma phosphate.) These lower-affinity, distorted Mg²⁺-sites would then continue as sites for Mg2+-inhibition, at least through K+release from (K)E1MgATP (Figs. 8, 9). With the transfer of phosphate from ATP to enzyme, Mg2+ from MgATP would follow, to occupy those sites as the occluded Mg2+ of (Mg)E1P. On the other hand, divalent cation inhibition of vanadate binding [33] and E₂P hydrolysis [30] would be mediated through the Mg2+ binding region of the nucleotide site.

Acknowledgments

We thank Dr. Marcia Steinberg for advice on the IAF-labeled enzyme and the presteady-state kinetic measurements, and Eva Nemeth and Sylvia Cohen for careful technical assistance. Supported by grants from the National Institutes of Health (NS-05430) and the National Science Foundation (DCB-8817355).

References

- 1 Kaplan, J.H. (1983) Am. J. Physiol. 245, G327-G333.
- 2 Glynn, I.M. (1985) in The Enzymes of Biological Membranes (Martonosi, A., ed.), Vol. 3, pp. 35-114, Plenum Press, New York.
- 3 Anner, B.M. (1985) Biochem, J. 227, 1-11.
- 4 Skou, J.C. (1988) Meth. Enzymol. 156, 1-25.
- 5 Jørgensen, P.L. and Andersen, J.P. (1988) J. Membr. Biol. 103, 95-120.
- 6 Pedemonte, C.H. and Beaugé, L. (1983) Biochim. Biophys. Acta 748, 245-253.
- 7 Pedemonte, C.H. and Beaugé, L. (1986) Arch. Biochem. Biophys. 244, 596-606.
- 8 Pauls, H., Serpersu, E.H., Kirch, U. and Schoner, W. (1986) Eur. J. Biochem. 157, 585-595.
- 9 Forbush, B., III (1987) J. Biol. Chem. 262, 11104-11115.
- 10 Sachs, J.R. (1988) J. Physiol. 400, 575-591.
- 11 Rossi, R.C. and Garrahan, P.J. (1989) Biochim. Biophys. Acta 981, 105-114.
- 12 Stewart, J.M.M., Jørgensen, P.L. and Grisham, C.M. (1989) Biochemistry 28, 4695–4701.
- 13 Jørgensen, P.L (1974) Biochim. Biophys. Acta 356, 36-52.
- 14 Robinson, J.D. (1967) Biochemistry 6, 3250-3258.
- 15 Robinson, J.D. (1969) Biochemistry 8, 3348-3355.
- 16 Steinberg, M. and Karlish, S.J.D. (1989) J. Biol. Chem. 264, 2726–2734.
- 17 Post, R.L., Hegyvary, C. and Kume, S. (1972) J. Biol. Chem. 247, 6530–6540.
- 18 Knack, I. and Rohm, K.H. (1981) Hoppe-Seyler's Z. Physiol. Chem. 362, 1119-1130.
- 19 Dawson, R.M.C., Elliott, D.C., Elliott, W.H. and Jones, K.M. (1986) Data for Biochemical Research (3rd Edn.), p. 425, Clarendon Press, Oxford.
- 20 Kapakos, J.G. and Steinberg, M. (1986) J. Biol. Chem. 261, 2090-2095.
- 21 Shaffer, E., Azari, J. and Dahms, A.S. (1978) J. Biol. Chem. 253, 5696–5706.
- 22 Campos, M., Berberian, G. and Beaugé, L. (1988) Biochim. Biophys. Acta 940, 43-50.
- 23 Drapeau, P. and Blostein, R. (1980) J. Biol. Chem. 255, 7827-7834.
- 24 Robinson, J.D. (1975) Biochim. Biophys. Acta 384, 250-264.
- 25 Robinson, J.D. (1981) Biochim. Biophys. Acta 642, 405-417.
- 26 Robinson, J.D. (1989) Biochim. Biophys. Acta 997, 41-48.
- 27 Fukushima, Y. and Post, R.L. (1978) J. Biol. Chem. 253, 6853–6862.
- 28 Richards, D.E. (1988) J. Physiol. 404, 497-514.
- 29 Campos, M. and Beaugé, L. (1988) Biochim. Biophys. Acta 944, 242-248.
- 30 Post, R.L., Toda, G. and Rogers, F.N. (1975) J. Biol. Chem. 250, 691-701.
- 31 Askari, A. and Huang, W.H. (1984) J. Biol. Chem. 259, 4169-4176.
- 32 Cantley, L.C., Cantley, L.G. and Josephson, L. (1978) J. Bicl. Chem. 253, 7361-7368.

- 33 Robinson, J.D. and Mercer, R.W. (1981) J. Bioenerg. Biomembr. 13, 205-218.
- 34 Robinson, J.D. (1974) Biochim. Biophys. Acta 341, 232-247.
- 35 Glynn, I.M., Hara, Y., Richards, D.E. and Steinberg, M. (1987) J. Physiol. 383, 477-485.
- 36 Karlish, S.J.D., Yates, D.W. and Glynn, I.M. (1978) Biochim. Biophys. Acta 525, 252-264.
- 37 Hegyvary, C. and Jørgensen, P.L. (1981) J. Biol. Chem. 256, 6296-6303.
- 38 Forgac, M.D. (1980) J. Biol. Chem. 255, 1547-1553.

- 39 Castro, J. and Farley, R.A. (1979) J. Biol. Chem. 254, 2221-2228.
- 40 Robinson, J.D. (1982) J. Bioenerg. Biomembr. 14, 319-333.
- 41 Berberian, G. and Beaugé, L. (1985) Biochim. Biophys. Acta 821, 17-29.
- 42 Robinson, J.D., Leach, C.A., Davis, R.L. and Robinson, L.J. (1986) Biochim. Biophys. Acta 872, 294-304.
- 43 Swann, A.C. and Albers, R.W. (1978) Biochim. Biophys. Acta 523, 215-227.
- 44 Robinson, J.D. (1985) J. Bioenerg. Biomembr. 17, 183-200.
- 45 Garrahan, P.J. and Glynn, I.M. (1967) J. Physiol. 192, 175-188.